A Question About Erasthmus' Sieve

Students of Mathematics are familiar with Erasthmus' Sieve.

2    x

3        x            

4     x

5            x

6    x    x

7

8    x

9        x

10     x        x

11

12    x    x

13

14    x

15        x    x

16    x

17

18    x    x

19

20    x        x

21        x

22    x

23

First, we strike all multiples of 2 up to the square root (5.) Then all multiples of 3, then all multiples of 5, etc.


I wrote a digital implementation of the Sieve, and used the index creatively, to keep track of the multiples. To "strike" an integer, I set the value of the relevant array entry to 2.

In writing the code, I soon observed that as I asked the machine not to look at 2's, the first prime was an obstacle. To overcome this, I wrote a separate loop for 2's, and then began from three, only using the "strike array entry" function only on non-2 array entries.

This was very satisfactory, and I was able to develop a list of all primes < 2 ** 29, in 287 seconds on my overclocked Core i5 9600 computer.

In bragging to a friend, I attempted to reduce the size of my code, and mistakenly took out the loop that struck 2's. This should have resulted in chaos, but the algorithm picked up 4 as a non-2, and struck every fourth entry. This removed all multiples of 2 that were not multiples of another prime, and I accidentally improved the efficiency of my code - not only did it not do a separate 2 loop, but when it ran the required loop, it took steps by 4, reducing the number of iterations by half.

I didn't even notice, at first, because on the output loop, I output 2 literal, and began at 3, only outputting odd-indexed array entries, so the 4 was never officially output as a "prime."

But I was only a fool for a day. I soon inspected the entire list, (on a small number {101},) observed the 4, and was able to account for it.

This reduced the runtime to develop a list of primes < 2 ** 29, down to 204 seconds.

Troubled by memory constraints, I proceeded with a bit of a mad-cap experiment. I built a list as follows, using only odd integers, with grim determination to use integer division and off-sets to account for the disagreement between indexing and array contents. I began working it out on paper, with the following results:

Index | Array contents:

00      | 3    |    x    |

01      | 5    |          |    x    |

02      | 7    |          |          |    x    |

03      | 9    |    x    |

04      | 11    |

05      | 13    |

06      | 15    |    x    |    x    |

07      | 17    |

08      | 19    |

09      | 21    |    x    |          |    x    |

10      | 23    |

11      | 25    |          |    x    |

12      | 27    |     x    |

13      | 29    |

14      | 31    |

15      | 33    |    x    |

16      | 35    |          |    x    |    x    |

17      | 37    |

18      | 39    |    x    |

19      | 41    |

20      | 43    |

21      | 45    |    x    |    x    |

22      | 47    |

23      | 49    |          |    x    |

24      | 51    |    x    |

25      | 53    |

26      | 55    |          |    x    |

27      | 57    |    x    |

28      | 59    |

29      | 61    |

30      | 63    |    x    |         |    x    |

31      | 65    |          |    x    |

32      | 67    |

33      | 69    |    x    |

34      | 71    |

35      | 73    |

36      | 75    |    x    |    x    |

37      | 77    |          |          |    x    |

38      | 79    |

39      | 81    |    x    |

40      | 83    |

41      | 85    |          |    x    |

42      | 87    |    x    |

43      | 89    |

44      | 91    |          |          |    x    |

45      | 93    |    x    |

46      | 95    |          |    x    |

47      | 97    |

48      | 99    |    x    |

49     | 101   |

To my great surprise, the contents of the array were exactly multiples of the original offset. That is to say, I was blindly accepting the array index value as a variable, and incrementing by the contents of the array, and the  resulting index content was a multiple of the integer!

Is this still Erasthmus' Sieve?

I had great success with the python3 program, and proceeded to develop a list of all primes < 2 ** 30, using 21.8 GB of RAM (within my 32GB limit,) and requiring a runtime of 361 seconds! 

Comments

Popular posts from this blog

Notice of corrupted results: Vigenere may yet be found to be a "group."

A Simple Rule for the Stock Market